
Wirsbo Push II och III

Pump- och shuntgrupp för golvvärme

Shuntgrupp avsedd för golvvärme i villor och andra anläggningar. Den är försedd med en termostatventil som styr ut en konstant framledningstemperatur till slingorna. Till shuntgruppens sekundärsida ansluts en golvvärmefördelare med rumsreglering.

I större hallar med många slingor i samma rum, kan ytterligare en termostatventil med rumsgivare kopplas i serie med den befintliga termostaten. Funktionen blir då att den ena termostaten blir rumsreglering och den andra max-begränsar framledningstemperaturen. Push II klarar ca 200 m² och Push III ca 500 m² vid normala värmebehov. Se Tekniska data och dimensioneringsdiagram.

WIRSBO VVS-System

Box 871, 721 23 VÄSTERÅS Tel 021-19 87 00, Telefax 021-14 88 40

Regionkontor: Göteborg 031-52 09 45, Malmö 040-18 12 85 Stockholm 08-729 65 55, Härnösand 0611-155 10

Tekniska data

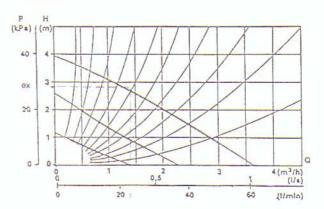
Push II

Termostatventil Danfoss RAV 20/8 RAVV 27-56°C.

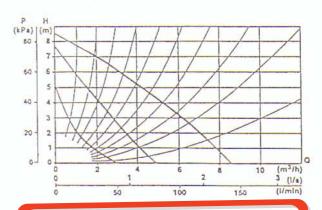
Strypventil TA-STA-25.

Anslutningar sekundärsida utv. R 1", primärsida inv. R 3/4". By-pass-ledning försedd med strypventil TA TRIM (grundinställning 3.0 varv från stängt läge).

Avstängningsventil på primär retur.

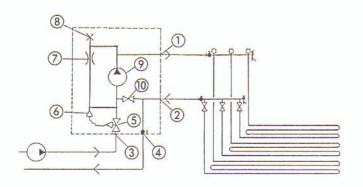

Pump Grundfos UPS 25-40, enfas 220 V, 65 W, 0,3 A, elektrisk kapacitetsreglering i 3 steg.

Push III


Lika Push II men med pump Grundfos UPS 25-80, enfas 220 V, 245 W, 1,1 A, elektrisk kapacitetsreglering i 3 steg.

Kapacitetsdiagram

Push II


Push III

UTGÅNGEN

Ersatt av annan broschyr eller produkt, se www.wirsbo.se

Principschema Wirsbo Push II och III

Strypventil 10 kan användas om differenstrycket i primärkretsen är så lågt att man ej får tillräcklig mängd varmvatten i sekundärkretsen trots att termostatventilen är öppen. Vid start av anläggningen, börja med att ha strypventilen öppen, skulle efter en tids drift temperaturen ej vara tillräcklig i seTillopp till golvvärmeslingor utv R 1"

2 Retur från golvvärmeslingor utv R 1"

3 Tillopp från primärvärmekälla inv R 3/4"

Retur till primärvärmekälla inv R 3/4"

Termostatventil

Temperaturgivare för termostatventil 6

Strypventil TA TRIM

Automatisk avluftare

Cirkulationspump

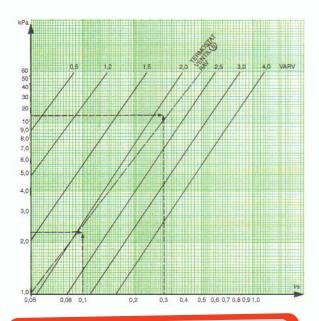
10 Strypventil

kundärkretsen stryp då ventilen tills önskad temperatur erhålles. I större hallar där alla slingor kan styras från en rumsgivare, kopplas en termostatventil (RAV och rumsgivare RAVV 10-38° med 5 m kapillärrör) i serie med ventil (5).

Teoretisk beräkning av strypvärde

Flödet genom termostatventilen 5 beräknas enligt

$$F_p = F_g \times \frac{5}{t_{pf} - t_{gr}}$$


F_p = Beräknat flöde genom termostatventilen (5) 1/s
F_g = Beräknat flöde i golvvärmesystemet, 1/s

t_{pf} = Primär tilloppstemperatur °C ③ = Golvvärmens returtemperatur °C ②

5°C = Golvvärmens temperaturdifferens

På den streckade kurvan avläses tryckfallet P genom termostatventilen (5) vid flödet F_p. Trycket P_p måste klaras av en primärpump eller om möjligt av shuntgruppens pump (9). Genom instrypning av strypventil (10) kan denna pumps tryckhöjd fördelas på golvslingor och primärsida inkl termostatventilen (5).

Instrypningsdiagram

Ersatt av annan broschyr eller produkt, se www.wirsbo.se

Golvvärmeberäkningen ger ett flöde av 0,4 1/s vid tryckfallet 12 kPa. Avläs i pumpens kapacitetsdiagram vid flödet 0,4 l/s. tryckhöjden 28 kPa (reglersteg 3). Alltså kan man utnyttja 28 - 12 = 16 kPa för tryckfall i termostatventilen ⑤ och övriga primära matarledningar. $t_{pf} = 50^{\circ}\text{C}$, $t_{gr} = 30^{\circ}\text{C}$ då blir

$$F_p = 0.4 \times \frac{5}{50 - 30} = 0.1 \text{ l/s}$$

 $F_g = 0.4$ l/s, $F_p = 0.1$ ls; alltså blir flödet som skall passera strypventilen 0.4 - 0.1 = 0.3 l/s. Maximal strypning för denna blir då 16 kPa. Gå in vid 0,3 l/s instrypningsdiagrammet och upp till linjen för 16 kPa och avläs strypvärdet 2,1 varv.

Gå sedan in i diagrammet vid 0,1 1/s och upp till den streckade linjen för termostatventilen (5) (RAV 20) och avläs tryckfallet 2,25 kPa. Tillgängligt tryck för primärsidans matarledningar blir då 16 - 2,25 = 13,75 kPa.